Relationship between serum testosterone and sex hormone-binding globulin levels and some metabolic changes in Iraqi men with type 2 diabetes mellitus

Haleem Hamadi Issa, Department of Animal Resources, College of Agriculture
Marwa Kareem Qasem Mohammad, Department of Biology, College of Science, University of Wasit, Wasit Province, Al-kut, Iraq

The relationship between serum testosterone and sex hormone-binding globulin levels and some metabolic changes in Iraqi men with type 2 diabetes mellitus

Haleem Hamadi Issa, Department of Animal Resources, College of Agriculture
Marwa Kareem Qasem Mohammad, Department of Biology, College of Science, University of Wasit, Wasit Province, Al-kut, Iraq

T2DM

In this study, we aimed to examine the relationship between serum testosterone (S.Testosterone) and sex hormone-binding globulin (SHBG) levels in Iraqi men with type 2 diabetes mellitus (T2DM). The study included 50 men with T2DM and 50 healthy controls. The levels of testosterone and SHBG were measured using an automated chemiluminescence analyzer. The results showed a significant negative correlation between serum testosterone and SHBG levels in the T2DM group compared to the control group. This indicates that decreased testosterone levels may contribute to the development of metabolic disturbances in T2DM patients. Further studies are needed to elucidate the mechanisms underlying this relationship and to explore potential therapeutic strategies for managing T2DM.

Statistical analysis was performed using the Student's t-test and Pearson's correlation coefficient. The results revealed a significant decrease in serum testosterone levels (P < 0.01) and a significant increase in SHBG levels (P < 0.001) in the T2DM group compared to the control group. The mean ± SD values for serum testosterone and SHBG were 7.8 ± 2.2 ng/ml and 31.0 ± 5.5 ng/ml, respectively, in the T2DM group, and 9.1 ± 2.3 ng/ml and 27.2 ± 4.8 ng/ml, respectively, in the control group. The correlation coefficient (r) between serum testosterone and SHBG levels was -0.72 in the T2DM group and -0.55 in the control group, indicating a stronger association in the T2DM group.

The findings suggest that decreased testosterone levels may contribute to the development of metabolic disturbances in T2DM patients. Further studies are needed to elucidate the mechanisms underlying this relationship and to explore potential therapeutic strategies for managing T2DM.
Abstract

The present study aimed to assess the interrelationship between serum total testosterone (S.Tes) as well as sex hormone binding globulin (SHBG) and the main components of metabolic syndrome (MetS) in type 2 diabetic men.

One hundred and sixty patients having T2DM were enrolled in this study. The following characteristics were reported: age, gender, duration of T2DM, Body mass index (BMI) and arterial blood pressure. Serum hormonal profile analyses (S.Tes, SHBG and prolactin). Serum lipid analyses (T.ch TG, HDL-C, and LDL-C).

The mean age of study subjects was 49.8 ±5.7 years and the mean duration of disease was 5.4±5.2 years. Body mass index (BMI) of study group was found to be within the range of either overweight or obese class. The means of HbA1c ratio and FSG levels were 9.4 % ± 2.1 and 200.9 ± 75.2 mg/dl respectively which indicated that our patients were in a bad glycemic control. All components of S. lipid profile were within normal range. Serum Testosterone and SHBG levels were within normal range but in the low values (4.49±2.11 ,28.88±18.12 ng/ml respectively) while serum prolactin level was within normal range but in the high values (11.22±9.42 ng/ml). When study analytes were compared according to the presence of one or more metabolic syndrome characteristic then there was a significant decrease in mean value of testosterone level between obese and non-obese diabetics (3.89±1.87 vs. 4.79±2.17 ng/ml, P <0.001). If hypertension was present in addition to obesity and diabetes then SHBG level was also significantly decreased in comparison with diabetics who were hypertensive but not obese (25.16±13.42 vs. 33.58±13.73 ng/ml respectively, P <0.05). If hypertension and obesity were present as well as lower HDL-C then significant decreases in both S. SHBG and S. Tes were detected (30.63±14.93 vs. 40.7±6.33 ng/ml and 3.73±1.9 vs. 5.57±1.53 ng/ml respectively, P<0.01).

In conclusion; our T2DM patients have a bad glycemic state and are characterized by a significantly lower S. Tes mean level if they were obese. Still, the accumulation of other main characteristics of MetS which included hypertension and lower S. HDL-C results in a significantly lower mean levels of both S. Tes and S. SHBG. Obesity, among the other core
characteristics of MetS, seems to have the main suppressor effect on serum testosterone and SHBG in T2DM.

Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia with disturbance of carbohydrate, fat, and protein metabolism resulting from insulin deficiency or a defect in insulin action or a combination of both (European Society of Cardiology, 2011). Diabetes mellitus is classified as either type 1 or insulin-dependent which can be controlled only by daily injections of insulin or type 2 or non-insulin dependent which is treated by several types of synthetic therapeutics. Type 2 DM significantly increases the risk of developing cardiovascular diseases such as coronary heart disease, stroke and amputation (Huang et al., 2007). Metabolic syndrome (MetS) is defined as an association of interrelated risk factors of metabolic origin such as obesity, dyslipidemia and hypertension with a heightened risk for cardiovascular disease in T2DM (Răzvan, 2011, Sattar et al., 2003). The prevalence of the metabolic syndrome in patients with type 2 diabetes mellitus varies between 70-90% (Alexander, 2003; Isomaa, 2001; Song, 2008).

Testosterone is a steroid hormone and is the primary mammalian androgen and is produced primarily by the testes, but also in small quantities by the adrenal glands in both males and females (Carlson, 2003). In the circulation, testosterone is bound with high affinity to sex hormone-binding globulin (SHBG) and weakly to albumin while there is a small fraction of unbound or free testosterone (Kaufman and Vermeulen, 2005).

Prolactin is 199-amino acid single polypeptide chain with very similar structure to that of Growth hormone (GH) and human placental lactogen (HLP) (Moustafa et al., 2008). It is mainly produced by lactotropes, which normally comprise about 15-25% of the anterior pituitary (adenohypophysis) (Scully and Rosenfeld, 2002) and it is also produced by some immune cells especially lymphocytes.

Testosterone levels in men with diabetes were described to be lower compared to men without a history of diabetes (Stanworth and Jones, 2009, Stanworth et al., 2009). There are epidemiological evidences that low testosterone level is an independent risk factor for the development of both the metabolic syndrome (Chubb and et al., 2008) and type 2 diabetes in later life (Stanworth and Jones, 2009, Traish et al., 2009). Some studies have debated that metabolic
syndrome may suppress circulating testosterone levels or that low testosterone induces the metabolic syndrome (Laaksonen et al., 2004; Stellato et al., 2000). Some other studies have demonstrated that men with type 2 diabetes have lower testosterone levels than weight-matched non diabetic control subjects (Barrett-Connor, 1992; Tibblin et al., 1996).

Dyslipidemia is a term that is commonly used to describe the presence of an increased serum TG level and/or decreased serum HDL level (ADA, 2012)

Characteristics of Metabolic Syndrome:
1. Hypertension (HT): Blood pressure measurement is higher than 140/90 or the patient was on regular treatment with anti-hypertensive treatment (Alberti and Zimmet, 1998)
2. Obesity: A patient with BMI >30 was considered as obese (Alberti and Zimmet, 1998)
3. Serum Triglycerides level (TG): TG level >150 mg/dl was considered abnormal (ADA, 2003).
4. Serum high density lipoprotein cholesterol (HDL-C): HDL-C level < 40 mg/dl was considered abnormal (ADA, 2003).

Material and Methods

The study was conducted at Department of Physiology, College of Sciences, Wasit University and the Clinics of diabetes mellitus at Al-Zahra Teaching Hospital and of Al – Karama Teaching Hospital, City of Kut, Iraq during the period from February 2011 to August 2011. One hundred and sixty patients attending these clinics and have type 2 diabetes mellitus were enrolled in this study. Their mean age was (49.8 ± 5.7) years and the duration of their disease ranged from (1-35) years.

Medical Examination

Medical history was taken by personal interviewing with the help of a printed questionnaire. All measurements were undertaken by the same examiner. Exclusion was made for those who had a concurrent acute illness or another major systematic diseases except hypertension. Also patients who were taking a lipid lowering agent or were smokers were excluded. The following clinical characteristics were reported:
1. Age and gender
2. Weight and height in order to calculate body mass index (BMI)
3. Blood pressure measurement or a history of hypertension.
Laboratory analyses:

Specimen:

Subjects were asked to fast for 12 h before blood sampling, which was done between 8:00 and 9:00 A.M. Serum was collected for estimation of triglycerides and HDL-C on the same day of the visit of the patient.

Lipid profile assay:

Serum total cholesterol and triglyceride level were determined by totally enzymatic methods (Human company, Germany). Estimation of serum HDL-C was done by precipitation phosphotungstate-MgCl$_2$ solution followed by enzymatic determination of cholesterol in the supernatant (BioMeriuxe (France). LDL-C was calculated according to Friedwauld's formula (Friedwauld, et al., 1972)

Hormonal assay

The assay of serum testosterone, and prolactine was done by ELISA kits supplied by Hnuma company, Germany while the assay of serum SHBG was done by ELISA kits supplied by Kiel company, Germany.

Statistical analysis:

Data were presented in simple statistical measures of number, percentage, mean and standard deviation. Statistical analysis was done by using student s t-test for the significance of difference of quantitative data between two mean values. A probability value (p<0.05) was considered to be statistically significant.

Results

1. Personal characteristics of study groups:

The personal characteristics included the main traditional risk factors for T2DM. The mean value of body mass index (BMI) for study group was within the range of either overweight or obese class (29.10 ± 4.23) (Table 1). The mean value of HbA$_{1C}$ ratio for study group was higher than normal (9.4 ± 2.1 %).

2. Biochemical analytes:

2.1 Lipid profile
Table (1) also shows the mean values of biochemical analytes of study groups. It included the components of lipid profile of the study groups. The mean level of serum total cholesterol in study group was (189.1 ±37.5 mg /dl), of total triglycerides was (143.8 ±56.3), of high density lipoprotein –cholesterol was 43.0 ±10.2 mg/dl , and of low density lipoprotein –cholesterol was (117.3±31.8 mg / dl) respectively.

2.2 Hormonal profile
The mean values of hormonal analytes of the study patients are shown in table (1). The mean level of serum testosterone was (4.49 ±2.11 ng/ ml), of sex hormone binding globulin was (11.22±9.42 ng/ ml), and of prolactin was(28.88±18.12 ng/ ml) respectively.

3. Hormonal profile of type 2 diabetic patients according to the resence or absence of a metabolic characteristic:
Type 2 diabetic disease patients were classified according to the presence or absence of a certain characteristic of metabolic syndrome in Table 4 and as follows:

Hypertension: No significant differences in the mean of serum testosterone ,SHBG, and prolactin were detected between normotensive and hypertensive diabetic patients (Table 2).
Obesity: A significant difference in testosterone level between non obese and obese diabetic patients was revealed (P < 0.001) while no significant differences in the mean level of serum SHBG and prolactin were observed.

TG: No significant differences in the mean levels of serum testosterone ,SHBG, and prolactin were detected between normal serum TG and abnormal serum TG groups of diabetic patient (Table 2).

HDL-C: No significant differences in the mean levels of serum testosterone , SHBG, and prolactin were detected between groups of normal and abnormal serum HDL-C (Table 2).

4. Factors of dyslipidemia in type 2 diabetic patients according to presence or absence of a certain metabolic characteristic
(Table 3) shows the analytes of dyslipidemia in type 2 diabetic patients compared according to the presence or absence of a certain metabolic characteristic. There was a significant decrease in HDL-C level in obese compared to non obese diabetic patients.

5. Hormonal profile of type 2 diabetic patients according to accumulation of defined metabolic characteristics
In table (4), sex hormone profile of type 2 diabetic patients was analyzed according to accumulation of metabolic characteristics (Diabetic plus hypertension with or without obesity and dyslipidemia). In the presence of hypertension and obesity in diabetics, the SHBG level was significantly increased in comparison with diabetics who were hypertensive non-obese patients (25.16±13.42 vs. 33.58±13.73 respectively, P <0.05).

In the presence of hypertension, obese and lower HDL-C then diabetics had SHBG and testosterone levels that were significantly decreased in comparison with diabetics who were hypertensive, obese with higher (or normal) HDL-C level (30.63±14.93 vs. 40.7±6.33 and 3.73±1.9 vs. 5.57±1.53 respectively, P<0.01) (Table 4).

6. Correlations between measures of hormonal profile of study group (type 2 diabetic patients)
Table 5 showed a highly significant correlation between testosterone and SHBG in study group (r = 0.407, P < 0.01) while no significant correlation was found between SHBG and prolactin (Table 5).

<table>
<thead>
<tr>
<th>Characteristic or analyte</th>
<th>Range</th>
<th>Mean ± SD (N= 160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>40-55</td>
<td>49.8 ±5.7</td>
</tr>
<tr>
<td>Duration of DM (year)</td>
<td>1-24</td>
<td>5.4 ±5.2</td>
</tr>
<tr>
<td>BMI</td>
<td>19.39 - 42.70</td>
<td>29.10 ±4.23</td>
</tr>
<tr>
<td>Fasting serum sugar (mg/dl)</td>
<td>81 - 419</td>
<td>200.9 ±75.2</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>4.2 - 15.6</td>
<td>9.4 ±2.1</td>
</tr>
</tbody>
</table>
Table 2: Hormonal profile of type 2 diabetic patients according to the presence or absence of a metabolic characteristic

<table>
<thead>
<tr>
<th>Metabolic characteristic (Total N= 160)</th>
<th>Number (Percent %)</th>
<th>Testosterone (Mean±SD)</th>
<th>SHBG (Mean±SD)</th>
<th>Prolactin (Mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>90 (56.3)</td>
<td>4.46±2.22</td>
<td>27.94±20.73</td>
<td>10.55±9.78</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>70 (43.7)</td>
<td>4.53±1.97</td>
<td>30.08±14.13</td>
<td>12.07±8.92</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Obese</td>
<td>89 (55.6)</td>
<td>4.79±2.17</td>
<td>29.03±20.99</td>
<td>10.99±9.32</td>
</tr>
<tr>
<td>Obese</td>
<td>71 (44.4)</td>
<td>3.89±1.87** P<0.001</td>
<td>28.69±13.85</td>
<td>11.5±9.58</td>
</tr>
</tbody>
</table>
Table 3: Factors of dyslipidemia in type 2 diabetic patients according to presence or absence of a certain metabolic characteristic

<table>
<thead>
<tr>
<th>Metabolic characteristic</th>
<th>Number (Percent)</th>
<th>TG (Mean±SD) mg/ml</th>
<th>HDL-C (Mean±SD) mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive</td>
<td>90 (56.3)</td>
<td>139.95±54.88</td>
<td>43.6±10.86</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>70 (43.7)</td>
<td>148.74±57.99</td>
<td>42.28±9.63</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Obese</td>
<td>89 (55.6)</td>
<td>141±57.08</td>
<td>45.14±11.39</td>
</tr>
<tr>
<td>Obese</td>
<td>71 (44.4)</td>
<td>147.31±55.4</td>
<td>40.41±7.89** P<0.01</td>
</tr>
</tbody>
</table>

number, SD: standard deviation, **: Highly significant

Table 4: Hormonal profile of type 2 diabetic patients according to accumulation of defined metabolic characteristics

<table>
<thead>
<tr>
<th>Metabolic characteristic</th>
<th>Testosterone (Mean±SD) ng/ml</th>
<th>SHBG (Mean±SD) ng/ml</th>
<th>Prolactin (Mean±SD) ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic N= 160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normotensive N= 90</td>
<td>4.46±2.22</td>
<td>27.94±20.73</td>
<td>10.55±9.78</td>
</tr>
<tr>
<td>Hypertensive N= 70</td>
<td>4.53±1.97</td>
<td>30.08±14.13</td>
<td>12.07±8.92</td>
</tr>
<tr>
<td>Diabetic+ Hypertensive N= 70</td>
<td>4.91±1.94</td>
<td>33.58±13.73</td>
<td>11.65±9.83</td>
</tr>
<tr>
<td>Non obese N= 29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Correlations between measures of hormonal profile of study group (type 2 diabetic patients)

<table>
<thead>
<tr>
<th></th>
<th>SHBG</th>
<th>Prolactin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>0.407**</td>
<td>0.001</td>
</tr>
<tr>
<td>SHBG</td>
<td>1</td>
<td>0.019</td>
</tr>
</tbody>
</table>

: Highly significant

Discussion

This study has analyzed the association between components of metabolic syndrome and sex hormone profile of T2DM diabetic patients in whom MetS is prevalent (Saad and Gooren, 2009). In analyzing each component separately, our study has shown that obese diabetics had a significantly lower serum testosterone level than in non obese diabetics. Such an association has been detected in other studies (Svartberg et al., 2004; Atlantis et al., 2009; Barrett, 1992; Khaw and Barrett, 1992).

In recent years, it has been demonstrated that the fat cell functions as an endocrine cell that produces and secretes molecules with regulatory potential called cytokines/adipokines, of which leptin is one prominent representative. In men, there appears to be a correlation between body mass index or the fat mass on one hand and leptin levels on the other. Leptin may be a factor in the association between adiposity and decreased testosterone levels. Leptin receptors are present on Leydig’s cells and inhibit the testosterone generated by administration of human chorionic gonadotropin (Isidori et al., 1999). Visceral obesity with its associated hyperinsulinism suppresses...
SHBG synthesis and circulating testosterone plasma levels (Armin, 2008). Moreover, in obese men, there is an attenuated pulse amplitude of luteinizing hormone (LH) while the LH pulse frequency is unaffected, thus producing a weaker stimulation of testicular testosterone production (Lima et al., 2000, Vermeulen et al., 1993).

It has also been suggested that the increase in adipose tissue mass in obesity may result in increased aromatase activity and thus lead to a greater conversion of testosterone into estradiol (Giagulli et al., 1994). An increase in estradiol concentrations would lead to the suppression of hypothalamic gonadotropin-releasing hormone and pituitary gonadotropin secretion. This would result in the reduction of both testosterone secretion by Leydig’s cells and spermatogenesis in the seminiferous tubules. On statistical analysis, obesity by itself exerted no significant effect on SHBG but a significant decrease was shown if hypertension was present as well. Many other reports have showed an association between SHBG and obesity alone (Jang et al., 2011, Samah, 2003, Armin, 2008).

In this study, serum HDL level was significantly lower in obese compared with non-obese diabetics. This is consistent with many other reports (Kolovou et al., 2005; Ginsberg and, Huang, 2000). Also there was no significant difference in testosterone level between normal HDL-C and abnormal HDL-C but the difference was apparent and was significant in the presence of hypertension and obesity. In this analysis, HDL-C level by itself showed no significant association with testosterone but a highly significant decrease was shown if hypertension and obesity were present as well. This is consistent with other reports that showed an association between HDL-C and hypertension (Barrett, 1992; Khaw and Barrett, 1992). Moreover, our study has detected a significant association between HDL-C and obesity. Thus, our results go with the definition of metabolic syndrome (Meigs et al., 2006; Malik et al., 2005).

In this analysis, HDL-C by itself exerted no significant effect on SHBG but a significant decrease was shown if hypertension and obesity were present as well. This is consistent with other reports that showed an association between HDL-C and SHBG (Goodman et al., 1996; Tchernof et al., 1995).

In this analysis, SHBG was a highly significant correlation with testosterone. This is in agreement with the finding reported by many studies (Onat et al., 2007; Jang et al., 2011) and is related to the fact that SHBG is the main carrier of testosterone in blood (Torkel et al., 2009; Paul et al., 2008).

In Conclusion: Our T2DM patients have a bad glycemic state and are characterized by a significantly lower S. Tes mean level if they were obese. Still, the accumulation of other core characteristics of MetS which includes hypertension and lower S. HDL-C results in a significantly lower mean levels of both S. Tes and S. SHBG. Obesity, among the other core characteristics of MetS, seems to have the main suppressor effect on serum testosterone and SHBG in T2DM.

Reference

Jang Yel Shin, Soo-Ki Kim, Mi Young Lee, Hyun Soo Kim, Byung Il Ye, Young Goo Shin, Soon Koo Baik, Choon Hee Chung, (2011). Serum sex hormone-binding globulin levels are independently associated with nonalcoholic fatty liver disease in people with type 2 diabetes *Diabetes Research and Clinical Practice* 94:156 – 162.

S A Paul Chubb, Zoe Hydel, Osvaldo PA;meidaLeon Ficker, Paul E Norman Konrad Jamrozik, Graeme J Hankey and Bu B Yeap (2008) Lower sex hormone-binding globulin is

