Mixed Approximate(Hurewicz) Cofibration

Daher Waly Freh - College of Science\ dept. physics\ Wassit University

المستخلص:
في هذا البحث درسنا مفهوما جديدا اسمه اللاتليفات التقريبية - M (المختلطة) واللاتليفات التقريبية هريوز – M (المختلطة)
ظاهرة والي فريح - كلية العلوم /قسم الفيزياء / جامعة واسط

ABSTRAC:
In this papers we study a new concept namely (M-approximate cofibration) Mixed Approximate Cofibration and (M-approximate Hurewicz cofibration) Mixed approximate Hurewicz cofibration.
Most of theorem which are valid for cofibration will also be valid for (M-cofibration); the others will be valid if we add extra conditions . Among the results we obtain are:
1- A product of two Mixed approximate Cofibration(Mixed approximate Hurewicz cofibration) is also a Mixed approximate Cofibration(Mixed approximate Hurewicz cofibration)
- The M-pullback of Mixed approximate Cofibration(Mixed approximate Hurewicz cofibration)is also Mixed approximate Cofibration(Mixed approximate Hurewicz cofibration)
Key words: Mixed approximate (Hurewicz) Cofibration , M-pullback, Lowering homotopy property.
Mathematics Subject Classification 2000 : 46L85, 55P05.
1- Introduction:

In our papers, we introduce and study the new concept of M-approximate Cofibration (M-approximate Hurewicz Cofibration).

We also proof some results and study M-pullback approximate Cofibration and T-lifting function.

Let \(Y \) be any space \(f_1 : X_1 \to Y \), \(f_2 : X_2 \to Y \) are two fiber spaces and \(\alpha : X_2 \to X_1 \) such that \(f_1 \circ \alpha = f_2 \), let \(X = \{X_1, X_2\} \), \(f = \{f_1, f_2\} \) the \(\{X, f, Y, \alpha\} \), has Mixed Lowering homotopy property (M-LHP) w.r.t a space then \(Z \) iff given a map \(h : Y \to Z \) and a homotopy \(g_t : X_1 \to Z \) satisfying \(h \circ f_2 = g_0 \circ \alpha \) then there exist a homotopy \(h_t : Y \to Z \) with \(h_0 = h \) and \(h_t \circ f_1 = g_t \) for all \(t \in I \). M-fiber space is called M-cofibration For class \(\mathcal{R} \) if \(f \) has (M-LHP) for each \(Z \in \mathcal{R} \). The word map in this work means continuous function, \(\mathcal{R} \) means the classes of topological space and \(I \) means \([0,1]\).

2- Preliminaries:

Recalled here same basic concepts and clarify notions used in the sequel

Definition 2-1 [5,6]:

Let \(f, g : E \to B \) be mapping and \(\xi \) be an open cover of \(B \), we say that \(f, g \) are \(\xi \)-closed iff given \(e \in E \) then there exist \(w \in \xi \) such that \(f(e), g(e) \in w \)

Definition 2-2 [4,5,6]:- A map \(p : E \to B \) have to approximate lowering homotopy property (A-LHP) w.r.t \(X \) iff given a map \(h : B \to X \) and a homotopy \(f_t : E \to X \) such that \(h \circ p = f_0 \) and open cover \(\xi \) of \(X \), then there exist a homotopy \(h_t : B \to X \) with \(h_0 = h \) and \(h_t \circ p, f_t \) are \(\xi \)-closed in \(f_t \), for all \(t \in I \). Now let \(\mathcal{R} \) be a given class of topological space, a map \(p \) is a cofibration w.r.t \(\mathcal{R} \) iff \(p : E \to B \) has (LHP) w.r.t each \(X \in \mathcal{R} \)

Definition 2-3 [2,3]:-

1- Let \(X_1, X_2, Y \) be three topological spaces, let \(X = \{X_1, X_2\} \), \(f = \{f_1, f_2\} \) where \(f_1 : X_1 \to Y \), \(f_2 : X_2 \to Y \) are two fiber space and \(\alpha : X_2 \to X_1 \) such that \(f_1 \circ \alpha = f_2 \) then \(\{X, f, Y, \alpha\} \) is a M-fiber space (Mixed fiber space)
If $X_1 = X_2 = X$, $\alpha = \text{identity}$, $f = f_1 = f_2$ then $\{X, f, Y\}$ is the usual fiber space

2- Let $\{X, f, Y, \alpha\}$ be a M-fiber space let $y_0 \in Y$ then $F = \{f(y_0)\}$ is the M-fiber over y_0

Definition 2-4 [2]: the $\{X, f, Y, \alpha\}$ be a M-fiber structure , X be any space, and $g : Y' \to Y$ be any continuous map into base Y

Let $X'_1 = \{(x_1, y') \in X_1 \times Y' : f_1(x_1) = g(y')\}$ and $X'_2 = \{(x_2, y') \in X_2 \times Y' : f_2(x_2) = g(y')\}$ then $X' = \{X'_1, X'_2\}$ is called a M-pullback of f by g and $f' = \{f'_1, f'_2\} : X' \to Y'$ is called induced M-function of f by g, that means $f'_1 : X_1 \times Y' \to Y'$, $f'_2 : X_2 \times Y' \to Y'$ are called induced M-function of $\{f'_1, f'_2\}$ by g

Define $\alpha' : X'_2 \to X'_1$ by $\alpha'(x_2, y') = (\alpha(x_2), y')$

To show α' is continuous

Since $\alpha' = \alpha \times l_{y'}$, α is continuous and $l_{y'}$ is continuous then α' is continuous

To show α' is commutative

$(f'_1 \circ \alpha')(x_2, y') = f'_1(\alpha'(x_2, y')) = f'_1(\alpha(x_2), y') = y'$, also $f'_2(x_2, y') = y'$ therefore $f'_1 \circ \alpha' = f'_2$
3- M- approximate(Hurewicz) Cofibration

Definition 3-1:- Let \(Y \) be any space \(f_1 : X_1 \rightarrow Y \), \(f_2 : X_2 \rightarrow Y \) are two fiber space and \(\alpha : X_2 \rightarrow X_1 \) such that \(f_1 \circ \alpha = f_2 \), let \(X = \{X_1, X_2\} \), \(f = \{f_1, f_2\} \) the \(\{X, f, Y, \alpha\} \), has Mixed approximate Lowering homotopy property (M-ALHP) w.r.t a space then \(Z \) iff given a map \(h : Y \rightarrow Z \) and a homotopy \(f_t : X_1 \rightarrow Z \) such that \(h \circ f = g \circ \alpha \) and open cover \(\xi \) of \(Z \), then there exist a homotopy \(h_t : Y \rightarrow Z \) with \(h_0 = h \) and \(h_t \circ f_1, f_t \) are \(\xi \)-closed in \(f_t \), for all \(t \in I \).

M-fiber space is called M- approximate cofibration for class \(\mathcal{R} \) if \(f \) has (M-LHP) for each \(Z \in \mathcal{R} \) and the \(\{X, f, Y, \alpha\} \) be a M-fiber structure over \(Y \) , we say that \(\underline{f} \) is M- approximate Hurewicz Cofibration iff \(f \) has (M-ALHP) w.r.t all spaces.

Proposition 3-2:- Every approximate(Hurewicz) Cofibration is Mixed approximate (Hurewicz)Cofibration.
Proof:- let \(\{X, f, Y, \alpha\} \) be a M-fiber space such that \(X_1 = X_2 = X \), \(\alpha = identity \) , \(f = f_1 = f_2 \). let \(h : Y \rightarrow Z \) and a homotopy \(g_t : X_1 \rightarrow Z \) such that \(h \circ f = g \circ \alpha \) and all open cover \(\xi \) of \(Z \) then there exist a homotopy \(h_t : Y \rightarrow Z \) with \(h_0 = h \) and \(h_t \circ f_1, g_t \) are \(\xi \)-closed in \(g_t \) for all \(t \in I \).

Then \(f \) has (M-ALHP) w.r.t \(Z \) , or w.r.t all space
Therefore \(f \) has M- approximate(Hurewicz) cofibration

Proposition 3-3:- let \(\underline{f} : X \rightarrow Y \) and \(\underline{f} : X' \rightarrow Y' \) be two M- approximate Cofibration then \(\underline{f} \times \underline{f} : X \times X' \rightarrow Y \times Y' \) is also M- approximate Cofibration.
Proof:- Let \(Z \) be any arbitrary space
Let \(\underline{h} : Y \times Y' \rightarrow Z \) be map where \(h : Y \rightarrow Z \) and \(h' : Y' \rightarrow Z \) and
Define \(\underline{g} : X \times X' \rightarrow Z \) as \(h^* \circ \underline{f} \rightarrow Z \) and two open covers \(\xi, \xi' \) of \(Z \) such that
\(g_t : X_1 \rightarrow Z \) and \(g_t : X_1 \rightarrow Z \) . since \(\underline{f}, \underline{f} \) are M- approximate Hurewicz Cofibration, then there exist a homotopy \(h_t : Y \rightarrow Z \) with \(h_0 = h \) and \(h_t \circ f_1, g_t \) are \(\xi \)-closed in \(g_t \), and a homotopy \(h'_t : Y' \rightarrow Z \) with \(h'_0 = h' \) and \(h'_t \circ f'_1, g'_t \) are \(\xi' \)-closed in \(g'_t \)
Now for g_t^* and open cover $\xi \times \xi'$ of $Z \times Z$, then there exist $h_t^*: Y \times Y' \to Z$ define as $h_0^* = h^*$ and $h_t^* o (f_1 \times f_1'), g_t^*$ are $\xi \times \xi'$-closed in g_t^*. Since Z be any arbitrary
Therefore $f_\times f': X \times X' \to Y \times Y'$ is M-Hurewicz Cofibration

Proposition 3-4:- The M-pullback of M- approximate (Hurewicz) Cofibration is also M- approximate (Hurewicz) Cofibration

Proof:- Let $h': Y' \to Z$ and $h: Y \to Z$. Define a homotopy $g_t: X_1 \to Z$ such that $h' o f_2' = g_0 o \alpha$ and open cover ξ of Z. Since f has M- approximate cofibration then there exist a homotopy $h_t: Y \to Z$ with $h_0 = h$ and $h_t o f_1, g_t$ are ξ-closed in g_t.

Define $g_t': X_1' \to Z$ such that $h' o f_2' = g_0' o \alpha'$, $g_t' = g_t o L$ and open cover ξ' of Z, then there exist a homotopy $h_t': Y' \to Z$ with $h_0' = h'$ and $h_t' o f_1', g_t'$ are ξ'-closed in g_t'.

Therefore $f': X' \to Y$ has M- approximate cofibration
References:

Received ……………………………………………………………………………………………………… (16/2/2010)
Accepted …………………………………………………………………………………………………… (23/6/2010)