Antibiotic resistance of *Klebsiella pneumoniae* isolates from in patients with burn infections

Abbas Atyia Hammoudi¹; Azhar N. Hussein²

1. Institute of Medical Technology/Baghdad, Middle Technical University.
2. College of Pharmacy, Al-Qadisiha University.

Abstract:

A total of 210 specimens were collected from burn wound patients their ages ranged from 5-50 years during the period March to August 2016 from inpatients whom attended to hospitals in Baghdad /Iraq. The bacterial agents were shown that single pathogens growth isolates only 42 isolates (37.5 %) of *Klebsiella pneumoniae*, 36 isolates (32.14%) *Pseudomonas* spp., 20 isolates (17.86%) *Escherichia coli*, 10 isolates (8.93%) *Staphylococcus aureus* and 4 isolates (3.57%) *proteus* spp. While mixed growth isolates frequency showed *K. pneumoniae* and *Pseudomonas* spp. 64 isolates (65.31%), *Pseudomonas* spp. and *E. coli* 18 isolates (18.37%), *K. pneumoniae* and *E. coli* 7 isolates (7.14%), *Pseudomonas* spp. and *proteus* spp. 4 isolates (4.08%), *K. pneumoniae* and *Staph. aureus* 3 isolates (3.06%) and *proteus* spp. and *E. coli* 2 isolates (2.04%). The results susceptibility testing showed that frequency resistance of *K. pneumoniae* isolates to: doxycycline were (100 %), tetracycline (95.23%), cefotaxime and pipracillin (85.71%) ceftriaxone (88.09%), trimethoprim sulfamethoxazol (83.33%), ticarcillin (78.57%), aztreonam (71.2%), ceftazidime (69.04%), ciprofloxacin (59.52%), gentamycin (52.19%), imipenem (59.52%) meropenem and amikacin (19.04%). Also the results showed the highest frequency of susceptibility among *K. pneumoniae* was associated to gentamycin (78.57%), meropenem and amikacin (76.19%) and imipenem (69.04%).

Key words: Burn wound, *Klebsiella pneumoniae*, Antibiotics susceptibility.
Introduction:

Burn wound infections are the most important and potentially serious impairments that occur in the acute period following injury [1]. These wounds were subsequently colonized by microorganisms, including gram-positive bacteria, gram-negative bacteria and yeasts, which derived from the host’s normal flora and hospital environments [2, 3]. Also microorganisms might reach to a patient’s burn lesions via contact with contaminated external environ-mental surfaces, water, fomites, air, hydrotherapy treatment, and the soiled hands of health care workers [4, 5].

Burn wound infections occurred by common pathogens such as *Pseudomonas aeruginosa*, *Klebsiella spp.* and *Staphylococcus aureus*, through producing a number of virulence factors that were important in the pathogenesis of invasive infections [6,7]. *Klebsiella pneumoniae*, which is opportunistic pathogens, isolated from bacteremia, pneumonia, urinary tract, soft tissue infections and burn wound infection. In addition, it is the principle cause of death in burn patients [8]. *K. pneumoniae* could easily persist in hospitals patient by hands of healthcare personnel [9], also it had become significant pathogens in nosocomial infections [10].

Using of antibiotics in different ecological roles and facilitating factors such as travel, contaminated food, poor sanitation in the community, lack of infections control in hospitals and non-antibiotic selection are the main selectors of resistant bacteria and mobile genetic elements conferring resistance [11].

The aim of this study was to isolate *K. pneumoniae* causing burn infections and to determine the prevalence of resistance among these bacteria against antibiotics which used to treat burn infections in patients referred to some teaching hospitals in Baghdad, Iraq.

Materials and Methods

Specimen collection:

A total of 210 sample swabs were collected from burn-wound patients (n=210) for the period March to August from inpatients whom attended to hospitals of Baghdad City: Al-Karama Teaching Hospital, Special Burn Hospital, Central Teaching Laboratories, Child Protection Teaching Hospital and Imam Ali Hospital. All specimens were labeled and transported by transport media (Al-Hanoof factor, Jordan) with aseptic technique to the laboratory within 1-2 hrs. Then streaked on blood agar, MacConkey agar and Eosin methylene blue agar (EMB) (Hi media /India). These swab samples were recovered from patients their age ranged from 5-50 years. After incubation for 24hrs. at 37° C,
the isolated pathogens were identified depending on the microscopic examination, morphological, biochemical tests and confirmation was done using API 20 E System [12].

Antibiotics sensitivity:

Antibiotic susceptibility test was performed by the Kirby-Bauer disc diffusion method using Muller-Hinton agar (Biomark Lab., Pune, India). The isolates were screened for susceptibility to the antibiotics: amikacin (30 µg), aztreonam (30 µg), cefotaxime (30 µg), ceftazidime (30 µg), ceftriaxone (30 µg), ciprofloxacin (5 µg), doxycyclin (30 µg), Gentamycin (10 µg), imipenem (10 µg), meropenem (10 µg), piperacillin (100 µg), ticarcillin (75 µg), tetracycllin (30 µg) and trimethoprim + sulfamethoxazole (1.25 + 23.75 µg). A bacterial suspension was prepared by picking up 1-2 colonies from 24 hr. cultures in to 2.5 ml of sterile distilled water. The suspension was spread on Mueller-Hinton Agar plate by sterile swabs in different directions. Anti-biotic disks were placed onto the cultures medium surface by sterile pair of forceps. The culture plates were incubated at 37°C for 24 hours; then inhibition zones around the antibiotics disks were measured [13]. The inhibition zones were controlled with the reference *E. coli* ATCC 25922 and *K. pneumoniae* ATCC 700603.

Statistical Analysis:

The Statistical Analysis System–SAS, (2012) program was used to effect of difference factors in the study parameters. Chi-square test was used to significant compare between percentage and least significant difference -LSD test was used to significant compare between means in this study.

Results and Discussion:

Isolation of bacterial agents were showed that single pathogens growth isolates only 42 isolates (37.5 %) of *Klebsiella pneumoniae*, 36 isolates (32.14%) *Pseudomonas* spp., 20 isolates (17.86%) *E. coli*, 10 isolates (8.93%) *Staphylococcus aureus* and 4 isolates (3.57%) *proteus* spp. (Table 1). While mixed growth isolates frequency showed *K. pneumoniae* and *Pseudomonas* spp. 64 isolates (65.31 %) , *Pseudomonas* spp. and *E. coli* 18 isolates (18.37%) , *K. pneumoniae* and *E. coli* 7 isolates (7.14%) , *Pseudo-monas* spp. and *proteus* spp. 4 isolates 4.08 % , *K. pneumoniae* and *Staph. aureus* 3 isolates (3.06 %) and *proteus* spp. and *E. coli* 2 isolates (2.04 %) table 2. These swab samples were recovered from patients their ages ranged from 5-50 years.

According to the (Tables 1) and (2) *K. pneumoniae* were isolated in high percentages 42 isolates (37.5%) while other 70 single isolates (62.50 %) with high significant differences P<0.01. Previous studies indicated that *K. pneumoniae* were
preceding all nosocomial gram-negative bacteria, so they accounted in an average (15 - 42 %) among different hospitals in Iraq [14, 15, 16, and 17]. Other studies had indicated that *K. pneumoniae* as nosocomial infections were a major cause of morbidity and mortality among several burn patient inhabitants [18, 19].

Table 1: Distribution of single pathogenic agents through 112 isolates among burn patients.

<table>
<thead>
<tr>
<th>Type of bacteria</th>
<th>Frequency</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae</td>
<td>42</td>
<td>37.5</td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>36</td>
<td>32.14</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>20</td>
<td>17.86</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
<td>8.93</td>
</tr>
<tr>
<td>proteus spp.</td>
<td>4</td>
<td>3.57</td>
</tr>
<tr>
<td>Total</td>
<td>112</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: The percentage of *K. pneumoniae* compares to pathogenic isolates.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>No. of isolates</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae</td>
<td>42</td>
<td>37.50</td>
</tr>
<tr>
<td>Other isolates</td>
<td>70</td>
<td>62.50</td>
</tr>
<tr>
<td>Total</td>
<td>112</td>
<td>100</td>
</tr>
</tbody>
</table>

Chi-square --- 9.026 ** (*P<0.01*)

P-value --- 0.00281

According to (Table 3) *K. pneumoniae* and *Pseudomonas spp.* were the most common mixed growth 64 isolates (65.31%), *Pseudomonas spp.* and *E. coli* 18 isolates 18.37% with significant differences (P<0.01). The high total number of mixed growth 98 (Table 3) might be due to many reasons like; burn wounds were suitable site for multiplication and infection of bacteria because of the large area involved and long duration of patient stay in the hospital. Further more to the contamination in the hospital environment mainly in the operating theatre, patient beds, medical instruments and hand carriers [20]. This result was inconsistent with Qader and Muhamad [16] who found that the most common mix growth isolates were *Pseudomonas spp.* and *K. pneumoniae* and agreed with him that *K. pneumoniae* were the most common single isolated pathogenic bacteria from burn wound infections.

Table 3: Distribution of mix pathogens isolated and percentage.

<table>
<thead>
<tr>
<th>Type of mix bacteria</th>
<th>Frequency</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae and Pseudomonas spp.</td>
<td>64</td>
<td>65.31</td>
</tr>
<tr>
<td>Pseudomonas spp. and E. coli</td>
<td>18</td>
<td>18.37</td>
</tr>
<tr>
<td>Klebsiella pneumoniae and E. coli</td>
<td>7</td>
<td>7.14</td>
</tr>
<tr>
<td>Pseudomonas spp. and proteus spp.</td>
<td>4</td>
<td>4.08</td>
</tr>
<tr>
<td>Klebsiella pneumoniae and Staphylococcus</td>
<td>3</td>
<td>3.06</td>
</tr>
</tbody>
</table>
Results of the current study, as in (Table 4) proved that the highest distribution of burn wound infections found within the age group 11-20 years (18 patients 42.8%) with significant differences P < 0.01. This result was in agreement with Abdul Basit et al.[21] who found that the burn wound infections distributed among age group 11-20 years (24 patients 48%) and it was more susceptible to burn wound infections .While Anvarinejad et al.[22] had found that the age group 16-36 years was more 40 patients (72.7%) susceptible to burn wound infections.

Table 4: Distribution of *K. pneumoniae* according to the age groups.

<table>
<thead>
<tr>
<th>Age groups (years)</th>
<th>No. of patients</th>
<th>Percentage for infection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>11-20</td>
<td>18</td>
<td>42.8</td>
</tr>
<tr>
<td>21-30</td>
<td>12</td>
<td>28.6</td>
</tr>
<tr>
<td>31-40</td>
<td>3</td>
<td>7.1</td>
</tr>
<tr>
<td>41-50</td>
<td>7</td>
<td>16.7</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>100</td>
</tr>
</tbody>
</table>

Chi-square 10.184

P-value 0.00094

(P <0.01)

In the present study, results listed in (Table 5) showed that there were 29 of females 69% and 13 of males 31% have infection and the age range from 5 to 50 year with high statistical significant difference (P<0.01) . This result inconsistent with Pondei et al. [23] who found that there is no significant difference between the type of organism isolated and the sex of the subjects (p = 0.66) . While Rajput, et al., [24] was in agreement with this study who found that burn wound infections in females (60%) was more than in males (40%) in India. Other study by Kalantar et al. [25] found that the burn wound infection in males was (46.5 %) and (53.5 %) in female.

Table 5: Distribution of *K. pneumoniae* according to patients.

<table>
<thead>
<tr>
<th>Age(years)</th>
<th>No. of patients</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>11-20</td>
<td>18</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>21-30</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>31-40</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>41-50</td>
<td>7</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Total and percentage of infection</td>
<td>42</td>
<td>29 (69%)</td>
<td>13 (31%)</td>
</tr>
</tbody>
</table>

Chi-square (P-value) 9.753 ** (0.00361)

** (P<0.01)

All the 42 *Klebsiella pneumoniae* isolates were tested for their antibiotic susceptibility against 14 selected antibiotics by using Kirby-Bauer disk diffusion method to
measure the diameter of inhibition zones around antibiotic discs and compared with NCCLS[26]. The inhibition zones were controlled with the reference Escherichia coli ATCC 25922 and K. pneumoniae ATCC 700603. (Table 6) and (Figure 1) shows that frequency resistance of isolates. doxycycline were (100%), tetracycline (95.23%), cefotaxime and pipracillin (85.71%) ceftriaxone (88.09%), trimethoprim-sulfamethoxazol (83.33%), ticarcillin (78.57%), aztreonam (71.42%), ceftazidime (69.04%), ciprofloxacin (59.52%), gentamycin (23.80%), imipenem (21.42%), meropenem and amikacin (19.04%).

The most active antibiotics against all isolates of K. pneumoniae were meropenem and amikacin (76.19%) followed by gentamycin (71.42%), imipenem (69.04%) and ciprofloxacin (38.09%), while the minimum active antibiotic were tetracycline 2.38% followed by cefotaxime and pipracillin (9.52%), ceftriaxone (11.90%) and ticarcillin (16.66%). The highest frequency of susceptibility among K. pneumoniae isolates were associated to meropenem and amikacin (76.19%), gentamycin (71.42%), imipenem (69.04%), ciprofloxacin (38.09%), ceftazidime and aztreonam (19.04%).

In local study at Baghdad city; Al-Qafaji, [27] pointed that (100%) and (94.5%) of K. pneumoniae isolates were resistant to Cefotaxime and Ceftazidime, respectively. Al-Obadi, [28] referred that (90.5%), and (97.5%) of isolates were resistant to cefotaxime, and imipenem, respectively. The present study have percentage resistance (85.71%) and (21.42%) to cefotaxime and imipenem respectively in compared to local studies but not agree with imipenem result in local study.

Also Kevin et al. [29] pointed that the resistance of K. pneumoniae isolates to cefotaxime 69.5%, ceftazidime (68.5 %) and these results relatively in agreement with the present study. This variation in resistance might be due to the widespread use of the cefotaxime, furthermore K. pneumoniae isolates had a large plasmid conferred resistance to this antibiotic [30].

The isolates showed high percentage of resistance to Pipracillin antibiotic 85.71% and this result was in agreement with the study that was done by Fazeli et al.[31] who found that 88.4% resistance to pipracillin, while relatively in agreement with the study that was done by Al-Sa'adone,[32] who pointed that the resistance of K. pneumoniae isolates to pipracillin was (97.2 %). On the other hands AL-Taai, [33] referred that the resistance of K. pneumoniae isolates to pipracillin was (100%).

The isolates showed resistance percentage to aztreonam (71.42%). This percentage agree with the study done by Sarogamma and Ramakrishna, [34] who pointed that the
resistance percentage of *K. pneumoniae* isolates to this antibiotic was 70 % and Malini *et al.* [35] revealed (96.6%) resistance to aztreonam, while Lina, [36] pointed that all isolates were (100 %) sensitivity to aztreonam.

The isolates showed resistance percentage to trimethoprim-sulfame-thoxazol (83.33%). While studies by AL-Taai, [33] recorded that *K. pneumoniae* isolates showed resistance (100 %). Also this result was relatively agree with the study was done by Abdolaziz *et al.* [37] who found that the percentage of resistance (83%).

The isolates showed resistance percentage to Tetracycline 83.33%. This percentage was agree with the study that done by Sarogamma and Ramakrishna, [35] who documented (83%) resistance to this antibiotic, while Lina, [36], Najmadeen, [38] and Al-Qafaji, [27] showed (71.5%) , (39.5%), (32.5%) resistance respectively.

The isolates showed the resistance percentage to Doxycycline 100%. This percentage disagree with the study done by Mama, *et al.* [39] who found the percentage of resistance to this antibiotic (71%).

K. pneumoniae isolates showed resistance percentage to Ceftriaxone (88.09%). This percentage was consistent with the studies were done by Doumith *et al.* [40] , Al-Obadi, [28] who reported that (87%) , (87.5%) resistance respectively. While AL-Taai, [33] found the percentage of resistance to ceftriaxone (72.22%). The difference in resistance might be return to counter this widespread use of this antibiotic, change in permeability of the outer membrane, as well as the secretion of β-lactamase enzymes and efflux pump system [41].

The isolates showed the lowest resistance percentage to meropenem (19.04 %). This result was in agreement with the study done by Masoume *et al.*, [42] who found that the percentage of resistance to meropenem was (20.5 %) and this finding might be due to the limited use of this antibiotic as routine antibiotic treatment.

The isolates showed the resistance percentage to (Gentamycin 23.80%). This result disagrees with the studies were done by Al-Qafaji, [27] (67.5%), Al-Zengena, [43] (63.6 %), Masoume *et al.*, [42] [45] (41.3%). While the result was relatively in agreement with the study was done by Dua'a, [44] who found that the resistance percentage to Gentamycin (16.6 %).

The isolates showed the resistance percentage to Amikacin (19.04 %). This result was inconsistent with the study was done by Malini *et al.* [46] (2014) who found that the percentage of resistance to amikacin ranges from (76.6 %) to (100 %). On the other hand, Dua'a, [44] found that the resistance percentage was (22.22 %).

The isolates showed the resistance percentage to Ciprofloxacin (59.52%). This
result was in agreement with the study done by Mshana, [45] who found that the percentage of resistance to Ciprofloxacin (54%). While this result was relatively agree with the study done by Yedekci et al. [46] who found that the percentage of resistance to Ciprofloxacin was (66.6%). High percentage of resistant for these antibiotics could be attributed not only to the production of β-lactamases, but also other resistance mechanisms. Li, and Nikadio, [47] mentioned that there were three further resistance mechanisms include conformational changes in Penicillin binding proteins (PBPs), permeability changes in the outer membrane, and active efflux of the antibiotic.

The isolates showed the resistance percentage to ticarcillin 78.57%. This result was disagree with the studies done by Breurec et al. [48], Aljanaby and Alhasani, [49] who found that the percentage of resistance to ticarcillin was (100%).

On the other hand, the isolates showed the resistance percentage to trime-thoprim-sulfamethoxazol (83.33%).

This result was agree with the study was done by Abdolaziz et al. [37] who found that the percentage of resistance (83%).

Table 6 : Antibiotic susceptibility tests of isolated strains of K. pneumoniae.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Susceptible</th>
<th>Intermediate</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>32 (76.19%)</td>
<td>2 (4.76%)</td>
<td>8 (19.04%)</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>8 (19.04%)</td>
<td>4 (9.52%)</td>
<td>30 (71.42%)</td>
</tr>
</tbody>
</table>

Figure 1: The percentage of resistance of the antibiotics.

References:
time-related changes of antimicrobial resistance patterns and predominant
bacterial profiles of burn wounds and body flora of burned patients, Burns, No. 30,
6. khwam, R. H. (2002). The Contamination by Aerobic Pathogenic Bacteria Isolated
from Postoperative Wounds and Burns and Study some of Their Sources Especially
cytotoxin toxoid as vaccine against klebsiellosis in rabbits and mice. Vaccine .
19: 4505-4510.
simultaneous outbreak of Serratia marcescens and Klebsiella pneumoniae in a
10. Alves, M. S. ; Dias, R. C. ; de Castro, A. C. ; Riley, L. W. andMoreira, B. M.
(2006). Identification of clinical isolates of indole-positive and indole-negative
11. Lynch, JP. ; Clark ,NM. and Zhanel, GG. (2013). Evolution of antimicrobial resistance
among Enterobacteriaceae (focus on extended spectrum beta-lactamases and
Lippincott Williams and Wilkins. Philadelphia, USA.
antimicrobial resistance patterns of bacteria implicated in community urinary tract

of Science, Al-Nahrain University, Baghdad, Iraq.

37. Mama, M.; Abdissa, A. and Sewunet, T.(2014). Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to alternative topical agents at Jimma University Specialized Hospital, South-West Ethiopia,

45. Mshana, S. (2011). Molecular Epidemiology of Extended-Spectrum Beta-Lactamases (ESBL) Producing Enterobacteraeae from the Bugando Medical Centre, Mwanza, Tanzania and the University of Giessen Medical Hospital, Germany, PhD thesis, Augustine University oTanzania.

